

Deliverable 2.1.2 Detailed Project Description 06 - TNIT2 Tunisia - Italy

EC DEVCO - GRANT CONTRACT: ENPI/2014/347-006 "Mediterranean Project"

Task 2 "Planning and development of the Euro-Mediterranean Electricity Reference Grid "

Med-TSO is supported by the European Union.

This publication was produced with the financial support of the European Union. Its contents are the sole responsibility of Med-TSO and do not necessarily reflect the views of the European Union.

INDEX

1	Introduction	3
2	Project description and data acquisition	3
3	Snapshots definition and building process	6
4	Power flow and security analysis	7
5	Assessment of reinforcements	11
6	Estimation of Active Power Losses	11
7	Estimation of Investment Cost	13
8	References	17

1 Introduction

The present document contains the studies on project TNIT2, in the context of the Mediterranean Master Plan of Interconnections. Project TNIT2 consists of an interconnection between Italy and Tunisia (+600 MW DC).

The document is structured as follows. Section 2 describes in detail the interconnection project and the different sources for data employed. Section 3 presents the definition of the different snapshots to be considered and the description of the building process followed. Section 4 comprises the criteria and results of the security analysis. Section 5 summarizes the results on security analysis and reinforcements' assessment. Section 6 contains the estimations made for the active power losses. Finally, section 7 comprises the estimation for the different investment costs.

2 Project description and data acquisition

The project involves the reinforcement of the first interconnection (600 MW) between Tunisia and Sicily to be realized through an HVDC submarine cable. The project may contribute to reduce present and future limitations to the power exchanges on the northern Italian border under specific conditions, and therefore it may allow to increase significantly the transmission capacity and its exploitation by on that boundary.

Project details										
Description	Substation (from)	Substation (to)	GTC contribution (MW)	Present status	Expected commissioning date	Evolution	Evolution driver			
New interconnection between Italy and Tunisia (HVDC)	Sicily (IT) Partanna	Tunisia (TN) Hawaria	600	Mid-term project	2025	Investment on time	Increase the interconnection capacity of the Euro- Mediterranean system and			
Reinforcement of interconnection between Italy and Tunisia (HVDC)	Sicily (IT) Partanna	Tunisia (TN) Hawaria	600	Long-term project	Post 2030	n.d.	reduce present and future limitations to the power exchanges on the northern Italian border			

The system defined for project TNIT2 is described in the table and figure below.

Full models	Boundaries	FR CH AT SI ME	
Italy IT	France FR		Full network
Tunisia TN	Switzerland CH		
Algeria DZ	Austria AT		Boundary conditions
	Slovenia Sl		
	Montenegro ME		Interconnection
	Greece GR		······ Project
	Libya LY	LX.	
	Morocco MA		
	Table 1 Da	sticing tion of each of the sustained in success TNUT	52

Table 1 – Participation of each of the systems involved in project TNIT2

For this project, the Algerian, Tunisian and Italian systems have been considered as full represented by their transmission network models. Boundary systems, i.e. Morocco, Libya, France, Switzerland, Slovenia, Montenegro and Greece, are considered as external buses with loads to simulate energy interchanges.

In the snapshots definition, 4 scenarios (S1, S2, S3 and S4) and seasonality (Winter/Summer) are distinguished. Models provided:

- For the Algerian system, a set of eight models have been provided, corresponding with 4 scenarios (S1, S2, S3 and S4) and seasonality (Winter/Summer).
- For the Tunisian system, a set of four models have been provided, corresponding with 4 scenarios (S1, S2, S3 and S4)
- For the Italian system a set of two models have been provided, one for scenarios S1 and S2 and the other for scenarios S3 and S4.

Full list of provided files is included in [1].In all models provided interconnected Areas are well identified. Generating technologies are identified in the 'Owner' field for Machines. Concerning merit order list, all generating units are considered with the same rank. Certain particularities in the models provided for the three systems involved in the project are mentioned below:

DZ: The file '0.DZ_Database guidline&Market data_Common cases_S&W-Peak.xlsx' provided contains a complete guideline for the format used to collect network information, plus the generation dispatch by technologies, demand and energy interchanges for S1-S4 and S/W. Concerning Algerian areas (4th character in bus code), from 1 to 7 have been identified as Algerian areas. Rest of them represent boundary countries, i.e. 'M' for Morocco and 'T' for Tunisia. Finally, 'S' represents the Algerian bus for DZES project, while 'I'

represents the Algerian bus for DZIT project. Finally, in the uploaded EXCEL files, generating technologies are identified using numbers. The following table identifies the Algerian nomenclatures and the standard:

Technologies Identified in EXCEL networks	Standard technologies
NUCLEAR	1 – NUCLEAR
CCGT - OLD	13 - GAS CCGT OLD 2 (45% - 52%)
CCGT - NEW	14 - GAS CCGT NEW (53% - 60%)
OCGT- OLD	17 - GAS OCGT OLD (35% - 38%)
WIND	26 - WIND ONSHORE
PV	23 - SOLAR PHOTOVOLTAIC
CSP	24 - SOLAR THERMAL
Hybrid	24 - SOLAR THERMAL
SVC	(Static Var Compensator $ ightarrow$ 99-UNKNOWN)
SLACK	Connection with Morocco (slack of the system)

TN: the file 'Mapping_file_for_TN.XLSX' provided contains information on generating units' characteristics and dispatch for the four scenarios.

IT: Additionally, the file 'Generators technology.xlsx' provided contains basic information on generating units of the Italian system. Generating technologies are well identified in the 'Owner' field for Machines, but using ENTSO-E codes. File 'Generators technology.xlsx' includes the matching between ENTSO-E codes and Med-TSO codes. Concerning merit order list, all generating units are considered with the same rank. Finally, the file 'IT_interconnections.xlsx' provided comes with basic information on interconnections of the Italian system.

Merging process consists of joining the different networks using the connecting buses defined in the next tables. First, Table 2 summarizes the interconnections between systems, which correspond with pairs of modelled systems, thus two interconnection buses must be identified, one for each of the systems in the interconnection.

Bus	Area	Substation	Bus	Area	Substation							
CHE3112	Algeria DZ	Chefia	JENT112	Tunisia TN	Jendouba							
EAO3212	Algeria DZ	El Aouinet	TAJT211	Tunisia TN	Tajerouine							
	Table 2 – Points of merging between systems in the TNIT2 project											

Table 3 shows the set of interconnections that correspond with pairs formed by a modelled system and a boundary system, thus only one bus in the modelled system needs to be identified.

Bus	Area (from)	Substation	Area (to)
BOUM111	Algeria DZ	Boussidi	Morocco MA
OUJM211	Algeria DZ	Oujda	Morocco MA
XWU_SO21	Italy IT	Soverzene	Autria AT
XNA_GL21	Italy IT	Glorenza	Autria AT
XLI_PO21	Italy IT	Pordenone	Autria AT
XGR_TA41	Italy IT	Taio	Autria AT
XSO_ME11	Italy IT	Mese	Switzerland CH
XSI_VE1I	Italy IT	Verderio	Switzerland CH
XSE_PA21	Italy IT	Pallanzeno	Switzerland CH
XRO_SF11	Italy IT	S. Fiorano	Switzerland CH
XRO_GO11	Italy IT	Gorlano	Switzerland CH
XRI_VA21	Italy IT	Valpelline	Switzerland CH
XRI_AV21	Italy IT	Avise	Switzerland CH
XME_CA11	Italy IT	Castasegna	Switzerland CH

_

Bus	Area (from)	Substation	Area (to)
XLA_MU11	Italy IT	Musignano	Switzerland CH
XGO_ME21	Italy IT	Mese	Switzerland CH
XCA_ME21	Italy IT	Castasegna	Switzerland CH
XAL_PO21	Italy IT	Ponte	Switzerland CH
XVL_VE12	Italy IT	Venaus	France FR
XGR_PI9I	Italy IT	Piossasco	France FR
XBCA21	Italy IT	Camporoso	France FR
XAL_RO12	Italy IT	Rondisone	France FR
XAL_RO11	Italy IT	Rondisone	France FR
XAR_GA1I	Italy IT	Galatina	Greece GR
ΧVΙ_ΤΙ9Ι	Italy IT	Villanova	Montenegro ME
XRE_DI11	Italy IT	Redipuglia	Slovenia SI
XPA_DI21	Italy IT	Padriciano	Slovenia SI
XBE_SA1S	Italy IT	Salgareda	Slovenia SI
ABOU KAMMECH	Tunisia TN	Abou Kammech	Libya LY
ROUIS	Tunisia TN	Rouis	Libya LY

Table 3 – Points of merging between systems and external buses in the TNIT2 project

For the interconnection between Algeria and Morocco (boundary), two buses have been identified in Algerian networks, BOUM111 and OUJM211. However, it is important to remark that bus OUJM211 appears disconnected, since all the energy transfers between Morocco and Algeria are through BOUM111.

Finally, Table 4 presents the new interconnections associated to the TNIT2 project.

PROJECT	Bus	Area	Subs.	Bus	Area	Subs.	LINK							
DZIT	HAWARIA	Tunisia TN	Hawaria	XPA_EL9I	Italy IT	Partanna	HVDC							
		Table 4 – Poin	able 4 – Points of merging in the Projects in the TNIT2 project											

Projects TNIT2 involve two HVDC links between Tunisia and Italy. Buses in the Tunisian side (HAWARIA) and the Italian side (XPA_EL9I) have been identified.

3 Snapshots definition and building process

For the project TNIT2, a total number of eight Points in Time (PiT) have been defined [2]. Each of the PiT contains, for each of the systems considered, the active power generated, demanded and exported to the other systems. Active power production comes with a breakdown of technologies. Next table shows the power balance for each of the PiTS in TNIT2 project.

Med-TSO is supported by the European Union

project TN	IT2 PiT 1	L - Power	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	2543.3	3543.3	-1000.0	0.0	-1200.0	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	53276.4	49780.1	3497.2	1200.0	0.0	0.0	0.0	1736.3	0.0	-1139.1	1200.0	500.0	0.0	0.0
Algeria DZ	19134.3	19679.6	-545.3	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-845.3
project TN	IT2 PiT 2	2 - Powei	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	1671.8	2618.3	-946.5	0.0	-1200.0	-246.5	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	38039.3	33446.5	4592.8	1200.0	0.0	0.0	0.0	2941.2	1071.9	0.0	-198.5	-421.8	0.0	0.0
Algeria DZ	14299.8	14486.2	-186.3	246.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-432.8
project TN	IT2 PiT 3	3 - Powei	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	3910.7	4910.7	-1000.0	0.0	-1200.0	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	48939.5	42919.8	6019.7	1200.0	0.0	0.0	2026.6	0.0	213.2	1380.0	1200.0	0.0	0.0	0.0
Algeria DZ	21280.4	21980.4	-700.0	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1000.0
project TN	IT2 PiT 4	1 - Power	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	4624.4	5624.4	-1000.0	0.0	-1200.0	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	54884.8	56777.4	-1892.6	1200.0	0.0	0.0	-1293.6	-900.6	-1068.5	-1530.0	1200.0	500.0	0.0	0.0
Algeria DZ	19810.8	18510.8	1300.0	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0
project TN	IT2 PiT 5	5 - Powei	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	5193.6	5997.9	-804.3	0.0	-1004.3	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	53328.7	60483.7	-7155.0	1004.3	0.0	0.0	-2279.5	-2391.6	-1655.0	-633.1	-1200.0	0.0	0.0	0.0
Algeria DZ	22849.8	21549.8	1300.0	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0
project TN	IT2 PiT (6 - Powei	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	5723.4	6445.7	-722.3	0.0	-922.3	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	49773.0	55144.4	-5371.4	922.3	0.0	0.0	-4299.0	-2932.9	0.0	46.4	391.8	500.0	0.0	0.0
Algeria DZ	28948.4	28294.9	653.5	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	353.5
project TN	IT2 PiT 7	7 - Powei	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	5743.1	4343.1	1400.0	0.0	1200.0	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	48420.1	57550.9	-9130.9	-1200.0	0.0	0.0	-4339.7	-663.5	-1082.5	-1345.2	0.0	-500.0	0.0	0.0
Algeria DZ	21645.7	20345.7	1300.0	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0
project TN	IT2 PiT 8	3 - Powei	Balance	[MW]										
sys	PG	PD	Pexport	TN	IT	DZ	FR	CH	AT	SI	ME	GR	LY	MA
Tunisia TN	3501.3	3488.3	12.9	0.0	-187.1	-300.0	0.0	0.0	0.0	0.0	0.0	0.0	500.0	0.0
Italy IT	37638.9	33959.8	3679.1	187.1	0.0	0.0	-4350.0	3836.3	1385.0	1372.8	748.0	500.0	0.0	0.0
Algeria DZ	20963.9	19663.9	1300.0	300.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0

Table 5 – Power balance for each of the PiTS defined in the TNIT2 project

4 Power flow and security analysis

This section presents the criteria agreed to run the power flow and N-x contingency analysis over the different snapshots built for project TNIT2. Details on the methodology used for the security analysis are compiled in [3].

Algeria

For the Algerian system, the N-1 will be focused on the transmission levels. Therefore, the branches considered for the N-1 analysis are only those at 220 kV and 400 kV. Also, overloads will only be checked for branches at 220 kV and 400 kV.

Concerning rates and tolerances, PSS/E files come with three different values, i.e. rateA, rateB and rateC. For lines, rateA will be considered for Winter, rateB will be considered for Summer, and rateC will be unused. For transformers, rateA will be considered as unique rate, thus rateB and rateC will be unused. The tolerance for overload will be 0% for all branches, in N and N-1 situations.

Regarding the loss of generating units, the energy lost will come from the Moroccan interconnection, until rate. Then, if it is necessary, the rest of the energy lost will come from Italy through Tunisia, via the TNIT interconnection.

Finally, no N-2 situations have considered for Algeria.

Tunisia

For the Tunisian system, the N-1 will be focused on the transmission levels. Therefore, the branches considered for the N-1 analysis are only those at 150 kV, 225 kV and 400 kV. Also, overloads will only be checked for branches at 150 kV, 225 kV and 400 kV.

Concerning rates and tolerances, PSS/E files come with three different values, i.e. rateA, rateB and rateC. For lines and transformers, rateA will be considered all snapshots, thus rateB and rateC will be unused. The tolerance for overload will be 0% for all branches in N, and +20% in N-1 situations.

Regarding the loss of generating units, the energy lost will come first from Italy, via the TNIT interconnection, until rate. Then, if it is necessary, the rest of the energy lost will come from Morocco through Algeria.

Finally, no N-2 situations have considered for Tunisia.

Italy

For the Italian system, the N-1 will be focused on the transmission levels. Therefore, the branches considered for the N-1 analysis are only those at 150 kV, 220 kV, 400 kV and 500 kV. Also, overloads will only be checked for branches at 132 kV, 150 kV, 220 kV, 400 kV and 500 kV.

Concerning rates and tolerances, PSS/E files come with three different values, i.e. rateA, rateB and rateC. For lines and transformers, 1.2 times the rateA will be considered for Winter and 0.8 times the rateA for Summer. Thus, rateB and rateC will be unused. The tolerance for overloads in lines will be 0% for N and N-1 situations. The tolerance for overloads in transformers will be 0% for N and +10% for N-1 situations.

Regarding the loss of generating units, each area will provide with its own internal resources.

Finally, the set of N-x outages is defined by considering simultaneous outage of each couple of branches with a degree of separation from the interconnections less or equal to two.

AC security analysis of selected PiTs

In the context of the TNIT2 project, PiT 4 has been selected to be analyzed using the full AC power flow. The objective of this analysis are the voltages at the transmission network and, in case of problems, study potential solutions.

area	Algeria DZ	Tunisia TN
generators (+)	2127.4	1513.8
demand (-)	7951.9	1860.3
bus shunt (+)	0.0	111.5
series reactance of lines (-)	1679.1	648.3
shunt charging of lines (+)	9811.8	1606.6
reactance of transformers(-)	2180.6	837.7
exporting (-)	127.7	-114.4

Next table contains the reactive power balance for this PiT

Table 6 – Reactive power balance for PiT 4 in the Algerian and Tunisian systems

Table 6**Errore. L'origine riferimento non è stata trovata.** shows how the most of the reactive power generation comes from the shunt charging of lines, especially in the case of Algeria where generating units provide only the 30% of the reactive power demanded by loads. However, despite this is a good indicator for

QV analysis, some problems with bus voltages arise from the N and N-1 security analysis. Next tables depict all those voltage problems.

3		se [kv]	[hd] N u	[nd] N *	[nd] I-N u	6 N-1 [pu]	CASE	DZ GST5212@ BLH5212@ 1 220kV	DZ BLH52126 HM052226 1 220KV	DZ 00M31116 AB231126 1 400kV	DZ HMO5222@ GSH7212@ 1 220KV
طَ		Vba	Vmi	Vma:	Vmiı	Vmax	BASE	lin	lin	lin	lin
ې GST5212	ALGERIA D	ара 220	.932	е 2 1.068	۲ میز 0.900	се ш Л 1.100	BASE	чт г -1.67%	4 - 1.65%	lin	lin
GST5212 BLH5212	ALGERIA D ALGERIA D	едл 220 220	.932 0.932	1.068 1.068	۲ <u>س</u> ۵.900 ۵.900	1.100 1.100	BASE	<mark>ч</mark> -1.67%	4 -1.65% -1.69%	lin	lin
GST5212 BLH5212 OOM3111	ALGERIA D ALGERIA D ALGERIA D	eq 220 220 220 2400	0.932 0.932 0.950	1.068 1.050	ії 0.900 0.950	1.100 1.100 1.050	BASE	4 -1.67%	47 -1.65% -1.69%	4.14%	Lin
ід GST5212 BLH5212 ООМЗ111 MLN7212	ALGERIA D ALGERIA D ALGERIA D ALGERIA D	eq 220 220 220 2400 220 220	0.932 0.932 0.950 0.932	1.068 1.068 1.050 1.068	0.900 0.900 0.950 0.900	1.100 1.100 1.050 1.100	-4.47 %	4 -1.67%	u -1.65% -1.69% -6.52%	4 1.14% -1.27%	u;1 -5.69%
<u>G</u> ST5212 BLH5212 OOM3111 MLN7212 HBS7212	ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D	eq 220 2220 2400 2220 220 220 220	0.932 0.932 0.950 0.932 0.932	1.068 1.068 1.050 1.068 1.068	0.900 0.900 0.950 0.900 0.900	1.100 1.100 1.050 1.100 1.100	-4.47% -4.23%	4 -1.67% -6.52% -6.26%	u -1.65% -1.69% -6.52% -6.27%	4 1.14% -1.27% -1.04%	u; -5.69% -5.44%
<u>ğ</u> GST5212 BLH5212 OOM3111 MLN7212 HBS7212 ORD7212	ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D	eq 2 220 2 220 2 400 2 220 2 220 2 220 2 220 2 220	0.932 0.932 0.950 0.932 0.932 0.932 0.932	1.068 1.068 1.050 1.068 1.068 1.068	0.900 0.950 0.900 0.900 0.900 0.900	1.100 1.050 1.100 1.100 1.100 1.100	-4.47% -4.23% -3.98%	4 -1.67% -6.52% -6.26% -5.98%	4 -1.65% -1.69% -6.52% -6.27% -5.99%	1.14% -1.27% -1.04%	u; -5.69% -5.44% -5.16%
Ġ GST5212 BLH5212 OOM3111 MLN7212 HBS7212 ORD7212 HBK7212	ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D	ед 220 2220 2400 2220 2220 2220 2220 2220	0.932 0.932 0.950 0.932 0.932 0.932 0.932 0.932	1.068 1.068 1.050 1.068 1.068 1.068 1.068	0.900 0.900 0.950 0.900 0.900 0.900 0.900	1.100 1.100 1.050 1.100 1.100 1.100 1.100	-4.47% -4.23% -3.98% -2.98%	4 -1.67% -6.52% -6.26% -5.98% -4.91%	4 -1.65% -1.69% -6.52% -6.27% -5.99% -4.92%	4 1.14% -1.27% -1.04%	u ; -5.69% -5.44% -5.16% -4.10%
Ġ GST5212 BLH5212 OOM3111 MLN7212 HBS7212 ORD7212 HBK7212 GSH7212	ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D	therefore triangle triangle	0.932 0.932 0.950 0.932 0.932 0.932 0.932 0.932 0.932	1.068 1.068 1.050 1.068 1.068 1.068 1.068 1.068	0.900 0.950 0.900 0.900 0.900 0.900 0.900 0.900	1.100 1.100 1.050 1.100 1.100 1.100 1.100 1.100	-4.47% -4.23% -3.98% -2.98%	-1.67% -6.52% -6.26% -5.98% -4.91% -1.29%	-1.65% -1.69% -6.52% -6.27% -5.99% -4.92% -1.33%	1.14% -1.27% -1.04%	u ; -5.69% -5.44% -5.16% -4.10%
Ġ GST5212 BLH5212 OOM3111 MLN7212 HBS7212 ORD7212 HBK7212 GSH7212 BRN7212	ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D ALGERIA D	t 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220 2 220	Image: bold state 0.932 0.932 0.950 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932	1.068 1.068 1.050 1.068 1.068 1.068 1.068 1.068 1.068	0.900 0.900 0.950 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100	-4.47% -4.23% -3.98% -2.98% -4.84%	-6.52% -6.26% -5.98% -4.91% -1.29% -6.92%	-1.65% -1.69% -6.52% -6.27% -5.99% -4.92% -1.33% -6.93%	F 1.14% -1.27% -1.04%	4 1 1 1 1 1 1 1 1 1 1

Table 7 – N and N-1 results on AC analysis for the Algerian system

Med-TSO is supported by the European Union

	8	ase [kV]	in N [pu]	[nd] N xe	in N-1 [pu]	[bd] [bd]	SE CASE	link DZ-TN XTAJEEAL@XTAJEEAL 220kV	n TN XTAJEEAL@TAJEROUI@1 220KV	n TN JENDOUBA®KEF @1 220KV	A IN MAKNASSI@BOU SAID@1 220KV	n TN MSAKENZ ØEL JEM Ø1 220KV	n TN MSAKEN2 @ZAAFRANA@1 220KV	n TN THYNA @TAPARURA@1 150KV	n DZ EA032120XTAJEEAL0 1 220KV	n TN HAWARIA GIT
snq	are	Vba	ĹmV	Vmē	Ĺm V	Vma	BAS	ACJ	lir	lir	lir	lir	lir	lir	lir	ger
XTAJEEALO TUNISI	A TN	220	0.950	1.095	0.918	1.127		-1.18%							-1.18%	
KAIROUAN TUNISI	A TN	220	0.950	1.095	0.918	1.127							-1.46%			
TAJEROUI TUNISI	A TN	220	0.950	1.095	0.918	1.127		-1.23%	-1.41%						-1.23%	-1.78%
MAKNASSI TUNISI	A TN	220	0.950	1.095	0.918	1.127					-4.65%					
C.KAIRON TUNISI	A TN	220	0.950	1.095	0.918	1.127	-1.07%						-1.65%			
HAJEB TUNISI	A TN	220	0.950	1.095	0.918	1.127					-1.18%					
KEF TUNISI	A TN	220	0.950	1.095	0.918	1.127				-1.15%						
EL JEM TUNISI	A TN	220	0.950	1.095	0.918	1.127						-2.95%				
ZAAFRANA TUNISI	A TN	220	0.950	1.095	0.918	1.127							-2.02%			c
BIR CHAABANE TUNISI	A TN	220	0.950	1.095	0.918	1.127	-5.05%	-5.24%	-5.40%	-4.83%	-2.63%	-2.55%	-2.30%	-1.85%	-5.24%	-6.48%
FERIANA TUNISIA	A TN	220	0.950	1.095	0.918	1.127	-3.07%	-3.246	-3.416	-4.043	-2.00%	-2.3/6	-2.326	-1.0/6	-3.236	-0.495
FEDIANA TUNISI	A TIN	150	0.950	1.095	0.918	1.127	-3.00%	-7 1 9	-7 25%	-4.04%	-6.97%	-2.00%	-2.316	-1.00%	-3.246	-0.496
FERIANA IUNISIA		150	0.927	1.073	0.900	1 100	-10 74%	-0.21%	-0.27%	-0.16%	-0.97%	-0.410	-0.210	-0.00%	-0.219	-0.00%
KEBILT TINIST	אידי ב	150	0.927	1 073	0.900	1 100	-5 83%	-3 32%	-3 33%	-3 32%	-3 46%	-3 14%	-3 22%	-3 21%	-3 32%	-3 15%
MAKNASSY TUNIST	1 TN	150	0.927	1 073	0.900	1 100	-4 73%	-2 68%	-2 71%	-2 62%	-6 34%	-2 48%	-2 38%	-2 34%	-2 68%	-2 47%
METLAOUI TUNISI	A TN	150	0.927	1.073	0.900	1.100	-10.10%	-7.76%	-7.77%	-7.71%	-7.69%	-7.56%	-7.49%	-7.45%	-7.76%	-7.94%
C.FERIAN TUNISI	A TN	150	0.927	1.073	0.900	1.100	-8.76%	-7.26%	-7.32%	-7.11%	-7.03%	-6.47%	-6.28%	-6.12%	-7.26%	-7.82%
S.BOUZID TUNISI	A TN	150	0.927	1.073	0.900	1.100	-9.68%	-7.89%	-7.93%	-7.81%	-10.45%	-7.40%	-7.31%	-7.24%	-7.89%	-7.78%
TOZEUR TUNISI	A TN	150	0.927	1.073	0.900	1.100	-11.78%	-9.32%	-9.33%	-9.29%	-9.28%	-9.19%	-9.15%	-9.12%	-9.32%	-9.43%
GAFSA TUNISI	A TN	150	0.927	1.073	0.900	1.100	-8.60%	-6.12%	-6.12%	-6.10%	-7.00%	-6.03%	-6.02%	-6.01%	-6.12%	-6.01%
TAPARURA TUNISI	A TN	150	0.927	1.073	0.900	1.100								-3.29%		
BIR HFAI TUNISI	A TN	150	0.927	1.073	0.900	1.100	-10.44%	-8.79%	-8.83%	-8.68%	-10.23%	-8.16%	-8.02%	-7.92%	-8.79%	-8.97%
NOYEL TUNISI	A TN	150	0.927	1.073	0.900	1.100	-3.81%	-1.35%	-1.35%	-1.35%	-1.50%	-1.12%	-1.21%	-1.20%	-1.35%	-1.13%
AL ITIZAZ TUNISI	A TN	150	0.927	1.073	0.900	1.100	-5.13%	-3.02%	-3.04%	-2.97%	-6.31%	-2.83%	-2.74%	-2.71%	-3.02%	-2.82%
BOUCHEMA400 TUNISI	A TN	400	0.950	1.050	0.930	1.070	1.80%									
XBOUCSOSM TUNISI	A TN	400	0.950	1.050	0.930	1.070	6.20%	4.07%	4.06%	4.08%	4.61%	4.02%	4.13%	4.10%	4.07%	4.25%
XBOUCSOSM2TUNISI	A TN	400	0.950	1.050	0.930	1.070	6.20%	4.07%	4.06%	4.08%	4.61%	4.02%	4.13%	4.10%	4.07%	4.25%

Table 8 – N and N-1 results on AC analysis for the Tunisian system

Subvoltages presented in Table 7Errore. L'origine riferimento non è stata trovata. and Table 8Errore. L'origine riferimento non è stata trovata. are located at 220 kV and 150 kV levels, and are mainly due to the large amount of power transferred in some areas. One possible solution is to redispatch the generation and connect some of the generating units that are offline. In the case of Algeria, the unused reactive power capability available is close to 10000 MVAR, while in Tunisia that unused capability is over 2200 MVAR. Another possible solution is to install QV control devices, such as shunt capacitors. Next tables show the voltages problems found in the base case.

bus	area	Vbase [kV]	V [pu]	Vlim [pu]	V-Vlim [%]	dV/dQe [%/100MVAR]
MLN7212	Algeria DZ	220	0.887	0.932	-4.471	14.09
HBS7212	Algeria DZ	220	0.889	0.932	-4.234	12.89
ORD7212	Algeria DZ	220	0.892	0.932	-3.978	12.27
HBK7212	Algeria DZ	220	0.902	0.932	-2.983	9.96
BRN7212	Algeria DZ	220	0.883	0.932	-4.838	15.25

 Table 9 – AC results on base case for the Algerian system, and reactive power sensitivities

bus	area	Vbase [kV]	V [pu]	Vlim [pu]	V-Vlim [%]	dV/dQe [%/100MVAR]
C.KAIRON	Tunisia TN	220	0.939	0.950	-1.073	6.83
BIR CHAABANE	Tunisia TN	220	0.899	0.950	-5.053	7.26
FERIANA	Tunisia TN	220	0.899	0.950	-5.065	7.28
OUED EDDARAB	Tunisia TN	220	0.899	0.950	-5.059	7.27
FERIANA	Tunisia TN	150	0.840	0.927	-8.696	8.33
KASSERIN	Tunisia TN	150	0.819	0.927	-10.744	21.90
KEBILI	Tunisia TN	150	0.868	0.927	-5.831	15.39
MAKNASSY	Tunisia TN	150	0.879	0.927	-4.731	8.50
METLAOUI	Tunisia TN	150	0.826	0.927	-10.105	6.10
C.FERIAN	Tunisia TN	150	0.839	0.927	-8.761	9.25
S.BOUZID	Tunisia TN	150	0.830	0.927	-9.677	17.67
TOZEUR	Tunisia TN	150	0.809	0.927	-11.781	12.90
GAFSA	Tunisia TN	150	0.841	0.927	-8.599	6.28
BIR HFAI	Tunisia TN	150	0.822	0.927	-10.436	18.90
NOYEL	Tunisia TN	150	0.889	0.927	-3.809	16.70
AL ITIZAZ	Tunisia TN	150	0.875	0.927	-5.128	9.45
BOUCHEMA400	Tunisia TN	400	1.068	1.050	1.802	1.94
XBOUCSOSM	Tunisia TN	400	1.112	1.050	6.204	7.01
XBOUCSOSM2	Tunisia TN	400	1.112	1.050	6.204	7.01

Table 10 – AC results on base case for the Tunisian system, and reactive power sensitivities

Table 9Errore. L'origine riferimento non è stata trovata. and Table 10Errore. L'origine riferimento non è stata trovata. also show first order sensitivities of bus voltages with respect to the injection of 100 MVAR at the same bus. All problems need less than 100 MVAR of reactive power to be solved locally. For example, the largest subvoltage in the Algerian system (bus BRN7212 220 kV, deviation -4.8%) presents a sensitivity of +15.3 %/100MVAR, which means that the deviation could be solved with only 32 MVAR of reactive power injected in that bus. In the case of Tunisia, the largest subvoltage (bus TOZEUR 150 kV, deviation -11.8%) presents a sensitivity of +12.9 %/100MVAR, which means that the deviation could be solved with only 92 MVAR of reactive power injected in that bus.

All these results indicate that an adequate redispatch and by connecting some offline units, voltages profile in both of the systems should be within limits.

5 Assessment of reinforcements

For this project, only the Tunisian system has defined a set of reinforcements to be analyzed. Between 400 kV substations of Hawaria and Mornaguia, two 400 kV lines are planned to be commissioned together with the first 600 MW of the project, each of them with double circuit configuration and almost 1000 MW of rate that can support the interconnection capacity (1200 MW) in N situations. However, if one of them is under outage, then the other becomes overloaded. To overcome this, the two lines Hawaria - Mornaguia are going to be considered as triple circuit configuration (i.e., consider impedance as 2/3 times the original and rate as 3/2 times the original). Reinforced Mornaguia - Hawaria link presents no overloads. In addition, a new 400 kV circuit between Mornaguia and Oueslatia (140 km) and three (3) 400 MVA 400/220 kV transformers at the Oueslatia substation have been also considered as reinforcements for the Tunisian network.

Next figure shows the map of the projected interconnection (yellow line), and corresponding reinforcements (green line).

6 Estimation of Active Power Losses

Internal losses in each country

To evaluate the performance of the new interconnection projects plus the planned reinforcements, the active power losses have been computed for 1) the snapshots built with the specified reinforcements considered, and for 2) the snapshots without interconnection projects and without reinforcements. Next tables show the active power losses summary for each of the PiTs, Table 11 with the results for the Algerian system, Table 12 with the results for the Tunisian system and Table 13 with the results for the Italian system.

	Power losses [MW]		
PiT	Without proj&reinf	With proj&reinf	Difference (W-WO)
1	436.9	438.6	1.7
2	195.5	155.5	-40.0
3	313.0	314.4	1.3
4	211.9	215.4	3.5
5	301.4	302.8	1.4
6	407.5	406.9	-0.6
7	357.3	355.4	-1.9
8	218.7	253.1	34.3

 Table 11 – Comparison of the active power losses for each snapshot, with and without interconnection projects and reinforcements,

 for the Algerian system

	Power losses [MW]		
PiT	Without proj&reinf	With proj&reinf	Difference (W-WO)
1	25.9	63.0	37.1
2	109.5	84.4	-25.2
3	33.1	81.6	48.5
4	53.0	91.3	38.2
5	57.9	92.4	34.5
6	64.1	97.4	33.3
7	106.9	137.4	30.5
8	68.6	75.5	6.8

 Table 12 – Comparison of the active power losses for each snapshot, with and without interconnection projects and reinforcements,

 for the Tunisian system

	Power losses [MW]		
PiT	Without proj&reinf	With proj&reinf	Difference (W-WO)
1	504.8	418.7	-86.1
2	414.7	405.6	-9.1
3	371.9	392.9	21.1
4	604.5	524.2	-80.3
5	530.0	558.4	28.4
6	541.5	707.8	166.3
7	703.7	763.1	59.4
8	272.2	774.8	502.6

Table 13 – Comparison of the active power losses for each snapshot, with and without interconnection projects and reinforcements, for the Italian system

Considering the time percentile (hours of the year) that each PiT represents, internal active power losses with and without the new interconnection project computed for each PiT have been converted to annual energy losses for each one of the 4 scenarios.

Losses in the new HVDC interconnection

Based on the hourly time series of exchange among countries provided by Market studies for each one of the 4 scenarios, with and without the new interconnection project, yearly losses on the interconnection have also been computed.

Computation of the losses in the new HVDC interconnection has been carried out for the four scenarios S1 to S4 and 8760 hours of estimated flows through the interconnections. The following table summarizes the values used for this estimation exercise, considering 400 kV and 500 kV as potential nominal voltage for the projected link:

V (kV)	r ₁ (Ω/100km)	A (MW/kA)	B (MW)	d (km)
400	1.10	1.5	3.4	200
500	0.57	2.2	5.0	200

Table 14 – Parameters for the TNIT2 HVDC link loss estimation

The following table shows the annual losses estimate for the HVDC link and scenario:

Scopario	Annual Losses (GWh)					
Scenario	400 kV	500 kV				
S1	207	180				
S2	127	132				
S3	256	209				

S4	145	142
able 15 – Annual Iosse	es estimate for the n	ew TNIT2 HVDC lini

Estimation of Investment Cost 7

The new HVDC link between Tunisia and Italy consists of 200 km of VSC bipolar undersea cable. Using 1.24 M€/km for the cost of the cables including installation, the estimate for the cable cost is 248 M€. The estimated cost for the two converters is 270 M€. Finally, the total investment cost in the new HVDC interconnection is 518 M€.

The election of the VSC technology over the LCC technology are listed below [4]:

- Active and reactive power can be controlled independently. The VSC is capable of generating leading or lagging reactive power, independently of the active power level. Each converter station can be used to provide voltage support to the local AC network while transmitting any level of active power, at no additional cost:
- If there is no transmission of active power, both converter stations operate as two independent static ٠ synchronous compensators (STATCOMs) to regulate local AC network voltages;
- The use of PWM with a switching frequency in the range of 1-2 kHz is sufficient to separate the fundamental voltage from the sidebands, and suppress the harmonic components around and beyond the switching frequency components. Harmonic filters are at higher frequencies and therefore have low size, losses and costs;
- Power flow can be reversed almost instantaneously without the need to reverse the DC voltage • polarity (only DC current direction reverses).
- Good response to AC faults. The VSC converter actively controls the AC voltage/current, so the VSC-• HVDC contribution to the AC fault current is limited to rated current or controlled to lower levels. The converter can remain in operation to provide voltage support to the AC networks during and after the AC disturbance;
- Black-start capability, which is the ability to start or restore power to a dead AC network (network ٠ without generation units). This feature eliminates the need for a startup generator in applications where space is critical or expensive, such as with offshore wind farms;
- VSC-HVDC can be configured to provide faster frequency or damping support to the AC networks ٠ through active power modulation;
- It is more suitable for paralleling on the DC side (developing multiterminal HVDC and DC grids) because of constant DC voltage polarity and better control.

The following tables provide an estimate for the investment cost for the internal reinforcements, and the Cost Benefit Analysis (CBA) carried out based on the results of EES and TC1 activities of the Mediterranean Project. It should be noted that this is an estimation of the cost based on the best practices in the region.

P6 - TNIT2 - Investment Cost								
New Interconnections								
Description	Туре	Countries	Length/number		Total Investment Cost	GTC Contribution	Location	Status
		Involved	OHL [km]	Cable [km]	M€	MW		
	HVDC Submarine Cable	TN-IT		200	248			Long-term
New Interconnection TN-IT	HVDC Converter Station	TN		1	135	600		Long-term
	HVDC Converter Station	IT		1	135			Long-term
Total Cost of New Interconnections (M€ / %total)					518	89%		
Internal Reinforcements						_		
Description	Туре	Countries	Length/number		Total Investment Cost	Capacity	Location	Status
		involved	OHL	Cable	ME			
			[km]	[km]	IVIE			
OHL 400 kV		TN	140		56		Mornaguia-Oueslatia	
Bays for OHL 400 kV		TN		2	3		Mornaguia, Oueslatia	
AutoTransformer 400/225 KV-400 MVA		TN	:	1	3		Oueslatia	
Bay AutoTransformer 400 kV		TN		1	2		Oueslatia	
Bay AutoTransformer 225 kV		TN		1	1		Oueslatia	
Total Cost of Internal Reinforcements (M€ / %total)					65	11%		
Total Project Investment Cost					583			

Table 16 – Investment costs of the project TNIT2

Assessmen	t results for the Cluster P6 - T	NIT2												
non	GTC increase direction	1 (MW)		600										
scenario	GTC increase direction	2 (MW)		600										
				MedTSO scenario										
sconario sn	ocific			1			2			3			4	
scenario sp	ecine		Ref, Scenario	with new project	Delta									
		TN	1400	2000	600	1400	2000	600	1400	2000	600	1400	2000	600
(import)		ITn ITs	11225	11825	600	11225	11825	600	11225	11825	600	11225	11825	600
	Interconnection Rate (%)*		15,5%	22,1%	6,6%	14,6%	20,9%	6,3%	13,5%	19,2%	5,8%	10,9%	15,5%	4,7%
Interconne			9,4%	9,9%	0,5%	9,5%	10,0%	0,5%	8,2%	8,6%	0,4%	7,9%	8,3%	0,4%
	B1-SEW	(M€/y)		69		46		130		63				
	B2-RES	(GWh/y)		200		300		1170		640				
Popofit	B3-CO ₂	(kT/y)		1000			-250		400		-350			
Indicators	D4 Lossos	(M€/y)		-13,4			-2,2		-13,0		-4,0			
multators	B4 - Losses	(GWh/y)		-314			-53		-455		-86			
	B5a-SoS Adequacy	(MWh/y)		0			0		0		0			
	B5b-SoS System Stability													
Residual	S1- Environmental Impact													
Impact	S2-Social Impact													
Indicators	S3-Other Impact													
Costs	C1-Estimated Costs	(M€)		583										

* considering the GTC for 2030, the Install generation for 2030 and the GTC for importation (the same criteria used in the ENTSO-E)

Rules for sign of Benefit Indicators

B1- Sew [M€/year] =	Positive when a project reduces the annual generation cost of the whole Power System
B2-RES integration [GWh/Year] =	Positive when a project reduces the amount of RES curtailment
B3-CO ₂ [kt/Year] =	Negative when a project reduces the whole quantity of $\rm CO_2$ emitted in one year
B4-Losses - [M€/Year] and [GWh/Year] =	Negative when a project reduces the annual energy lost in the Transmission Network
B5a-SoS [MWh/Year] =	Positive when a project reduces the risk of lack of supply

Assessment	Color code
negative impact	
neutral impact	
positive impact	
Not Available/Not Available	
monetized	

Table 17 – Results of the Cost Benefit Analysis for the TNIT2 project

8 References

-			
1	Snapshots building process	Share point	
2	Guide for setting up grid models for Network studies V 5.0	Share point	
3	Network Analysis and Reinforcement Assessment	Share point	
4	D. Jovcic and K. Ahmed, "Introduction to DC Grids," in High-Voltage	Share point	
	Direct-Current Transmission, John Wiley & Sons, Ltd, 2015, pp. 301–		
	306.		

DISCLAIMER

This document contains information, data, references and images prepared by the Members of the Technical Committees "Planning", "Regulations and Institutions"; "International Electricity Exchanges" and Working Group "Economic Studies and Scenarios", for and on behalf of the Med-TSO association. Whilst the information contained in this document and the ones recalled and issued by Med-TSO have been presented with all due care, the Med-TSO Members do not warrant or represent that the information is free from errors or omission.

The information are made available on the understanding that the Med-TSO Members and their employees and consultants shall have no liability (including liability by reason of negligence) to the users for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information and whether caused by reason of any error, negligent act, omission or misrepresentation in the information or otherwise.

Whilst the information is considered to be true and correct at the date of publication, changes in circumstances after the time of publication may impact on the accuracy of the information. The information may change without notice and the Med-TSOs Members are not in any way liable for the accuracy of any information printed and stored or in any way interpreted and used by a user.

The information of this document and the ones recalled and issued by Med-TSO include information derived from various third parties. Med-TSOs Members take no responsibility for the accuracy, currency, reliability and correctness of any information included in the information provided by third parties nor for the accuracy, currency, reliability and correctness of links or references to information sources (including Internet Sites).