

Deliverable 2.1.2 Detailed Project Description 08 - TNLYEY Tunisia-Libya-Egypt

EC DEVCO - GRANT CONTRACT: ENPI/2014/347-006 "Mediterranean Project"

Task 2 "Planning and development of the Euro-Mediterranean Electricity Reference Grid "

Med-TSO is supported by the European Union.

This publication was produced with the financial support of the European Union. Its contents are the sole responsibility of Med-TSO and do not necessarily reflect the views of the European Union.

INDEX

1	Introduction	. 3
2	Project description and data acquisition	. 3
3	Snapshots definition and building process	. 5
4	Power flow and security analysis	. 6
5	Assessment of reinforcements	. 7
6	Estimation of Active Power Losses	. 8
7	Estimation of Investment Cost	. 9
8	References	13

1 Introduction

The present document contains the studies on project TNLYEY, in the context of the Mediterranean Master Plan of Interconnections. Project TNLYEY consists of new interconnections between Tunisia and Libya (+1000 MW AC), and between Libya and Egypt (+1000 MW AC).

The document is structured as follows. Section 2 describes in detail the interconnection project and the different sources for data employed. Section 3 presents the definition of the different snapshots to be considered and the description of the building process followed. Section 4 comprises the criteria and results of the security analysis. Section 5 summarizes the results on security analysis and reinforcements' assessment. Section 6 contains the estimations made for the active power losses. Finally, section 7 comprises the estimation for the different investment costs.

2 Project description and data acquisition

The project consists in a new interconnection across Tunisia, Libya and Egypt.

Project details										
Description	Substation (from)	Substation (to)	GTC contribution (MW)	Present status	Expected commissioning date	Evolution	Evolution driver			
New interconnection between Tunisia and Libya (AC)	Tunisia (TN) Bouchema	Libya (LY) Sorman	1000	n.d.	n.d.	n.d.	Increase the transfer capacity in the Tunisia - Libya -			
New interconnection between Libya and Egypt (AC)	Libya (LY) Tubrak	Egypt (EY) -	1000	n.d.	n.d.	n.d.	Egypt transmission corridor			

The system defined for project TNLYEY is described in the table and figure below.

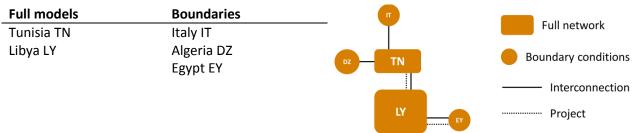


Table 1 – Participation of each of the systems involved in project TNLYEY

For this project, the Tunisian and Libyan systems have been considered as full represented by their transmission network models. Boundary systems, i.e. Algeria, Italy and Egypt, are considered as external buses with loads to simulate energy interchanges.

In the snapshots definition, 4 scenarios (S1, S2, S3 and S4) and seasonality (Winter/Summer) are distinguished. Models provided:

- For the Tunisian system, a set of four models have been provided, corresponding with 4 scenarios (S1, S2, S3 and S4)
- For the Libyan system a unique model has been provided.

Full list of provided files is included in [1].In all models provided interconnected Areas are well identified. Generating technologies are identified in the 'Owner' field for Machines. Concerning merit order list, all generating units are considered with the same rank. Certain particularities in the models provided for the three systems involved in the project are mentioned below:

TN: the file 'Mapping_file_for_TN.XLSX' provided contains information on generating units' characteristics and dispatch for the four scenarios.

Merging process consists of joining the different networks using the connecting buses defined in the next tables. First, Table 2 summarizes the interconnections between systems, which correspond with pairs of modelled systems, thus two interconnection buses must be identified, one for each of the systems in the interconnection.

Bus	Area	Substation	Bus	Area	Substation					
BEN GUERDANE	Tunisia TN	Ben Guerdane	ABOU KAMMECH	Libya LY	Abou Kammech					
SAADA	Tunisia TN	Saada	ROUIS	Libya LY	Rouis					
	Table 2 – Points of merging between systems in the TNLYEY project									

Table 3 shows the set of interconnections that correspond with pairs formed by a modelled system and a boundary system, thus only one bus in the modelled system needs to be identified.

Bus	Area (from)	Substation	Area (to)
HAWARIA	Tunisia TN	Hawaria	Italy IT
JENT112	Tunisia TN	Jendouba	Algeria DZ
TAJT211	Tunisia TN	Tajerouine	Algeria DZ
TBO 220A	Libya LY	Tobruk	Egypt EY
Table 3 – Pa	oints of meraina between sy	stems and external bus	es in the TNLYEY proiect

Finally, Table 4 presents the new interconnections associated to the TNLYEY project.

PROJECT	Bus	Area	Subs.	Bus	Area	Subs.	LINK				
TNLYEY	BOUCHEMA	Tunisia TN	Bouchema	JENT112	Tunisia TN	Sorman	AC				
TNLYEY	TBK 400	Libya LY	Tubrak	-	Egypt EY	-	AC				
	Table 4 – Points of merging in the Projects in the TNLYEY project										

3 Snapshots definition and building process

For the project TNLYEY, a total number of nine Points in Time (PiT) have been defined [2]. Each of the PiT contains, for each of the systems considered, the active power generated, demanded and exported to the other systems. Active power production comes with a breakdown of technologies. Next table shows the power balance for each of the PiTS in TNLYEY project.

project TNLYE	Y PiT	1 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	EY
Tunisia TN 5	667.7	3651.0	2016.6	0.0	1500.0	-83.4	600.0	0.0
Libya LY 15	598.5	15561.3	37.3	-1500.0	0.0	0.0	0.0	1537.3
project TNLYE	Y PiT	2 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	EY
Tunisia TN 4	672.6	3472.6	1200.0	0.0	1500.0	-300.0	0.0	0.0
Libya LY 12	2094.5	15144.5	-3050.0	-1500.0	0.0	0.0	0.0	-1550.0
project TNLYE	Y PiT	3 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	EY
Tunisia TN 3	8185.1	2774.5	437.6	0.0	1337.6	-300.0	-600.0	0.0
Libya LY 11	324.3	13067.4	-1743.1	-1337.6	0.0	0.0	0.0	-405.5
project TNLYE	Y PiT	4 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	EY
Tunisia TN 3	311.7	2775.7	536.0	0.0	1436.0	-300.0	-600.0	0.0
Libya LY 8	8164.0	10950.4	-2786.4	-1436.0	0.0	0.0	0.0	-1350.4
project TNLYE	Y PiT	5 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	EY
Tunisia TN 2	2620.6	2020.7	600.0	0.0	1500.0	-300.0	-600.0	0.0
Libya LY 5	236.9	8286.9	-3050.0	-1500.0	0.0	0.0	0.0	-1550.0
project TNLYE	Y PiT	6 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	ΕY
Tunisia TN 3	8185.2	2585.2	600.0	0.0	1500.0	-300.0	-600.0	0.0
Libya LY 5	829.6	8879.6	-3050.0	-1500.0	0.0	0.0	0.0	-1550.0
project TNLYE	Y PiT	7 - Powe	er Balanc	e [MW]				
sys			Pexport					EY
Tunisia TN 6								
Libya LY 16	5431.7	16381.7	50.0	-1500.0	0.0	0.0	0.0	1550.0
project TNLYE	Y PiT	8 - Powe	er Balanc	e [MW]				
sys	PG	PD	Pexport	TN	LY	DZ	IT	EY
- Tunisia TN 6								
Libya LY 16	5447.6	16397.6	50.0	-1500.0	0.0	0.0	0.0	1550.0
project TNLYE	Y PiT	9 - Powe	er Balanc	e [MW]				
sys	PG		Pexport					EY
Tunisia TN 3	8245.1	2645.2	600.0	0.0	1500.0	-300.0	-600.0	0.0
Libya LY 5	6443.0	8493.0	-3050.0	-1500.0	0.0	0.0	0.0	-1550.0

Table 5 – Power balance for each of the PiTS defined in the TNLYEY project

4 Power flow and security analysis

This section presents the criteria agreed to run the power flow and N-x contingency analysis over the different snapshots built for project TNLYEY. Details on the methodology used for the security analysis are compiled in [3].

Tunisia

For the Tunisian system, the N-1 will be focused on the transmission levels. Therefore, the branches considered for the N-1 analysis are only those at 150 kV, 225 kV and 400 kV. Also, overloads will only be checked for branches at 150 kV, 225 kV and 400 kV.

Concerning rates and tolerances, PSS/E files come with three different values, i.e. rateA, rateB and rateC. For lines and transformers, rateA will be considered all snapshots, thus rateB and rateC will be unused. The tolerance for overload will be 0% for all branches in N, and +20% in N-1 situations.

Regarding the loss of generating units, the energy lost will come first from Italy, via the TNIT interconnection, until rate. Then, if it is necessary, the rest of the energy lost will come from Morocco through Algeria.

Finally, no N-2 situations have considered for Tunisia.

Libya

For the Libyan system, the N-1 will be focused on the transmission levels. Therefore, the branches considered for the N-1 analysis are only those at 220 kV and 400 kV. Also, overloads will only be checked for branches at 220 kV and 400 kV.

Concerning rates and tolerances, PSS/E files come with three different values, i.e. rateA, rateB and rateC. For lines and transformers, rateA will be considered all snapshots, thus rateB and rateC will be unused. The tolerance for overload will be 0% for all branches in N and in N-1 situations.

Regarding the loss of generating units, the energy lost will come from the rest of active Libyan generating units.

Finally, no N-2 situations have considered for Libya.

5 Assessment of reinforcements

The main outcomes of the contingency analysis for each system involved in the project could be summarized to the following:

Tunisia:

The energy interchange with Libya through the projected 400 kV interconnection comes down to the 220 kV network at the Bou Chema substation. This fact may undergo some overloads at the 220 kV network. To overcome this, it is planned to include new 400 kV circuits that takes most of the energy interchanged between the north and the south. Reinforcements considered are:

- New 400 kV circuit between Bou Chema and Oueslatia.
- New 400 kV circuit between Oueslatia and Mornaguia.
- Three (3) new 400 MVA, 220/400 kV transformers at Oueslatia substation.
- Three (3) new 400 MVA, 220/400 kV transformers at Bou Chema substation.

Libya:

Relevant overloads detected at the 220 kV network are due to the fact that those cables have no ampacity enough. To overcome this, the main reinforcement identified is in the 84 km OHL from Tubroc to Saloum.

Next figures show the maps of interconnections, both existing (dashed-yellow line) and planned (yellow line), and corresponding reinforcements (green line).

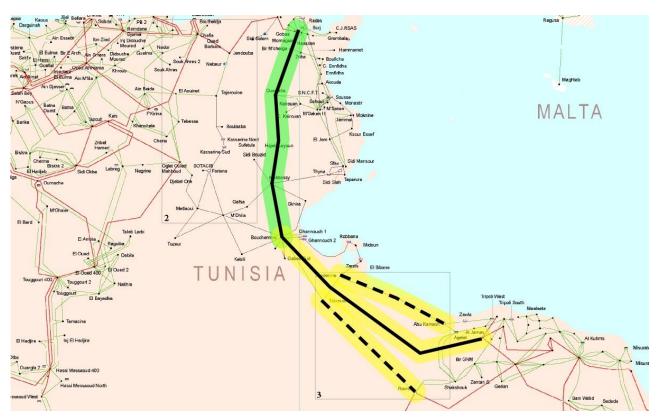


Figure 1 – Map of interconnections and reinforcements for project TNLYEY, detail of TNLY interconnection area

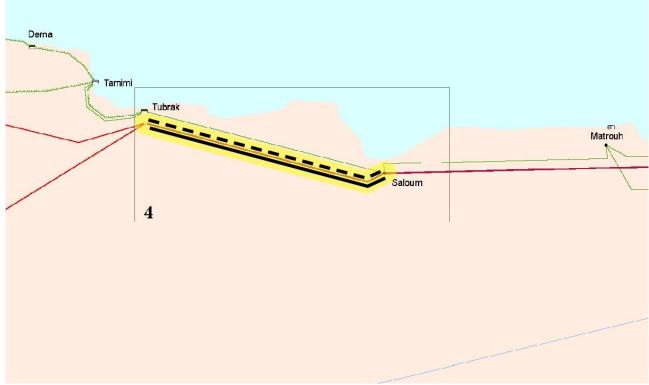


Figure 2 – Map of interconnections and reinforcements for project TNLYEY, detail of LYEY interconnection area

6 Estimation of Active Power Losses

Internal losses in each country

To evaluate the performance of the new interconnection projects plus the planned reinforcements, the active power losses have been computed for 1) the snapshots built with the specified reinforcements considered, and for 2) the snapshots without interconnection projects and without reinforcements. Next tables show the active power losses summary for each of the PiTs, Table 6 with the results for the Tunisian system and Table 7 with the results for the Libyan system.

	Power losses [MW]		
PiT	Without proj&reinf	With proj&reinf	Difference (W-WO)
1	72.5	169.4	96.9
2	27.9	80.0	52.2
3	43.6	59.9	16.3
4	22.7	59.1	36.3
5	80.9	117.0	36.1
6	63.3	139.6	76.3
7	57.0	102.3	45.3
8	70.8	113.3	42.6
9	49.7	103.8	54.1

 Table 6 – Comparison of the active power losses for each snapshot, with and without interconnection projects and reinforcements,

 for the Tunisian system

	Power losses [MW]		
PiT	Without proj&reinf	With proj&reinf	Difference (W-WO)
1	186.7	315.0	128.3
2	142.8	223.4	80.5
3	129.4	135.3	5.9
4	79.4	129.0	49.6
5	73.5	112.2	38.7
6	81.5	116.7	35.2
7	163.7	267.2	103.5
8	194.9	365.6	170.7
9	75.5	111.5	35.9

 Table 7 – Comparison of the active power losses for each snapshot, with and without interconnection projects and reinforcements, for the Libyan system

Considering the time percentile (hours of the year) that each PiT represents, internal active power losses with and without the new interconnection project computed for each PiT have been converted to annual energy losses for each one of the 4 scenarios.

Losses in the new AC interconnection project

Based on the hourly time series of exchange among countries provided by Market studies for each one of the 4 scenarios, with and without the new interconnection project, yearly losses on the interconnection have also been computed.

Computation of the losses in the new AC interconnection has been carried out for the four scenarios S1 to S4 and 8760 hours of estimated flows through the interconnections. The following table summarizes the values used for this estimation exercise:

link	r _l [pu]	NTC _{new} [mw]	NTC _{total} [MW]		
TN-LY	0.004600	1000	1500		
LY-EY	0.003918	1000	1500		

Table 8 – Parameters for the losses estimation in the TNLYEY interconnections

The following table shows the annual losses estimate on the interconnection project for each scenario:

Scenario S1 S2	Annual Los	sses (GWh)
	LY-EY	TN-LY
S1	66.7	89.9
S2	67.7	88.4
S3	66.3	85.8
S 4	64.6	89.3

Table 9 – Annual losses estimate for the TNLYEY new interconnection

7 Estimation of Investment Cost

The new AC link between Tunisia and Libya consists of 300 km of AC OHL. Using 0.5 M \in /km for the cost of the AC cables including installation, the estimate for the cable cost is 150 M \in . The cost of the end substations is estimated to be 1.5 M \in , each one including one AIS bay. Finally, the total investment cost in the new AC interconnection is 153 M \in .

The new AC link between Libya and Egypt consists of 350 km of AC OHL. Using 0.5 M€/km for the cost of the AC cables including installation, the estimate for the cable cost is 175 M€. The cost of the end substations is

estimated to be 1.5 M \in , each one including one AIS bay. Finally, the total investment cost in the new AC interconnection is 178 M \in .

The following tables provide an estimate for the investment cost for the internal reinforcements, and the Cost Benefit Analysis (CBA) carried out based on the results of EES and TC1 activities of the Mediterranean Project. It should be noted that this is an estimation of the cost based on the best practices in the region.

New Interconnections								
Description	Туре	Countries Involved		r	Total Investment Cost	GTC Contribution	Location	Status
			OHL [km]	Cable [km]	M€	MW		
	AC 400kV OHL	TN-LY	300		150			
New Interconnection TN-LY	OHL 400kV Circuit breaker (AIS bay)	TN-LY		1	1.5	1000		
	OHL 400kV Circuit breaker (AIS bay)	LY	LY 1		1.5			
	AC 400kV OHL	LY-EY	350		175			
New Interconnection LY-EY	OHL 400kV Circuit breaker (AIS bay)	LY	:	1	1.5	1000		
	OHL 400kV Circuit breaker (AIS bay)	EY	:	1	1.5			
Total Cost of New Interconnections (M€ / %total)					331	61%		
Internal Reinforcements		г	[Γ	
					Total	- ··		
Description	Туре	Countries	Length/	number	Investment Cost	Capacity	Location	Status
Description	Type	Involved	OHL Cable		Cost			Status
			[km]	[km]	M€	MW / MVA		
Reinforcement of a 84 km OHL from		LY	84	[]	33		Tubroc - Saloum	
OHL 400 kV		TN	250		102		Bouchemma -Oueslatia	
OHL 400 kV		TN	140		57		Mornaguia-Oueslatia	
Bays for OHL 400 kV		TN		4	6		Bouchemma, Oueslatia, Mornaguia	
AutoTransformer 400/225 KV-400 MVA		TN	:	1	3		Oueslatia	
AutoTransformer 400/225 KV-400 MVA		TN		1	3		Bouchemma	
Bay AutoTransformer 400 kV		TN		2	3		Bouchemma, Oueslatia	
Bay AutoTransformer 225 kV		TN		2	3		Bouchemma, Oueslatia	
Total Cost of Internal Reinforcements (M€/%total)			1	1	209	39%		
Total Cost of Internal Reinforcements (M€ / %total)					209	39%		

Table 10 – Investment cost of the project TNLYEY

Assessment	t results for the Cluster P	8 - TNLYEY												
non	GTC increase direction	on 1 (MW)		1000 (TN-LI) - 1000 (LI-EY)										
scenario	GTC increase direction	on 2 (MW)		1000 (LI-TN) - 1000 (EY-LI)										
			MedTSO scenario											
scenario specific				1			2			3			4	
scenario spe	eenie		Ref.	with new	Delta	Ref.	with new	Delta	Ref.	with new	Dolta	Ref.	with new	Delta
			Scenario	project	Denta	Scenario	project	Denta	Scenario	project	Denta	Scenario	project	Denta
GTC / NTC		TN	800	1800	1000	800	1800	1000	800	1800	1000	800	1800	1000
(import)		LY	1050	3050	2000	1050	3050	2000	1050	3050	2000	1050	3050	2000
(import)		EY	1250	2250	1000	1250	2250	1000	1250	2250	1000	1250	2250	1000
		TN	8.8%	19.9%	11.0%	8.4%	18.8%	10.5%	7.7%	17.3%	9.6%	6.2%	14.0%	7.8%
Interconneo	ction Rate (%)*	LY	4.5%	13.0%	8.5%	4.5%	13.0%	8.5%	4.5%	13.0%	8.5%	4.5%	13.0%	8.5%
		EY	1.4%	2.6%	1.1%	1.4%	2.6%	1.1%	1.3%	2.4%	1.1%	1.4%	2.5%	1.1%
	B1-SEW	(M€/y)		270		290		290		340				
	B2-RES	(GWh/y)		0		0		0		0				
Benefit	B3-CO ₂	(kT/y)		-1600		-1000		-1600			-1500			
Indicators	B4 - Losses	(M€/y)		47.1			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	130.8						
marcators	D4 - LOSSES	(GWh/y)		580			1466			1477			1625	
	B5a-SoS Adequacy	(MWh/y)		0			60			60		40		
	B5b-SoS System Stabili	ty												
Residual	S1- Environmental Imp	act												
Impact	S2-Social Impact													
Indicators	S3-Other Impact													
Costs	C1-Estimated Costs	(M€)						54	40					

* considering the GTC for 2030, the Install generation for 2030 and the GTC for importation (the same criteria used in the ENTSO-E)

Rules for sign of Benefit Indicators		Assessment	Color code
B1- Sew [M€/year] =	Positive when a project reduces the annual generation cost of the whole Power System	negative impact	
B2-RES integration [GWh/Year] =	Positive when a project reduces the amount of RES curtailment	neutral impact	
B3-CO ₂ [kt/Year] =	Negative when a project reduces the whole quantity of CO ₂ emitted in one year	positive impact	
B4-Losses - [M€/Year] and [GWh/Yea	a Negative when a project reduces the annual energy lost in the Transmission Network	Not Available/Not Available	
B5a-SoS [MWh/Year] =	Positive when a project reduces the risk of lack of supply	monetized	

Table 11 – Results of the Cost Benefit Analysis for the TNLYEY project

8 References

1	Snapshots building process	Share point
2	Guide for setting up grid models for Network studies V 5.0	Share point
3	Network Analysis and Reinforcement Assessment	Share point

DISCLAIMER

This document contains information, data, references and images prepared by the Members of the Technical Committees "Planning", "Regulations and Institutions"; "International Electricity Exchanges" and Working Group "Economic Studies and Scenarios", for and on behalf of the Med-TSO association. Whilst the information contained in this document and the ones recalled and issued by Med-TSO have been presented with all due care, the Med-TSO Members do not warrant or represent that the information is free from errors or omission.

The information are made available on the understanding that the Med-TSO Members and their employees and consultants shall have no liability (including liability by reason of negligence) to the users for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information and whether caused by reason of any error, negligent act, omission or misrepresentation in the information or otherwise.

Whilst the information is considered to be true and correct at the date of publication, changes in circumstances after the time of publication may impact on the accuracy of the information. The information may change without notice and the Med-TSOs Members are not in any way liable for the accuracy of any information printed and stored or in any way interpreted and used by a user.

The information of this document and the ones recalled and issued by Med-TSO include information derived from various third parties. Med-TSOs Members take no responsibility for the accuracy, currency, reliability and correctness of any information included in the information provided by third parties nor for the accuracy, currency, reliability and correctness of links or references to information sources (including Internet Sites).